POTENTIAL OF MOBILE MONITORING OF PHYSICAL ACTIVITY TO IMPROVE HUMAN HEALTH:
RESULTS OF AN INTERNATIONAL EXPERT PANEL WORKSHOP
Daumer M, Scholz M, Thaler K, Klose HP, Ebers GC, Kaufman K, Kulikowski CA, Haslinger B, Hoffmann KH on behalf of the Members of the Physical Activity Expert Panel (Contact: daumer@slcmsr.org)

Introduction

Physical activity is an outcome parameter for measuring the efficacy of treatment/rehabilitation, as well as often being a therapy in its own right [4]. There are almost no standardized ways for prescribing and controlling either the dosage or the effects of the PA treatment [6]. We conducted an international expert panel meeting to evaluate the usefulness of various telemedicine devices to monitor physical activity.

The following diseases and health conditions with a known relationship to PA were discussed:
- MS
- Parkinson’s disease
- Obesity/Diabetes
- Osteoporosis
- Dementia
- Cardiovascular Diseases
- Protheses
- Asthma
- COPD
- Levodopa

Results/Conclusions

There exists a serious problem in monitoring the long-term evolution of disability – an essential element for assessing the long-term effect of drug treatments e. g. in MS and Parkinson’s disease. An unobtrusive, easy-to-use system like the actibelt® could improve outcome assessments. Additional biosignals could give further information.

References:

Fig. 1: The BIGMIN study from Bayer: Sichering: Assessment of Physical Activity, Fatigue and Health-Related Quality of Life in the Early Stages of Multiple Sclerosis. Physical activity is measured with the actibelt® and a pedometer. [5]

Fig. 2: Parkinson’s disease ratings represent only a snapshot of daily life mobility. Optimized monitoring of patients’ mobility in clinical practice (therapy monitoring/optimization) and clinical studies necessary which represents a cross-section of daily mobility.

Tab 1: Experiment with the actibelt® and 3 parkinson’s disease patients: Relative changes in speed, step length and duration of turning around from off- to on-phases.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pat1</th>
<th>Pat2</th>
<th>Pat3</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>56.4</td>
<td>484.7</td>
<td>79</td>
<td>206.7</td>
</tr>
<tr>
<td>Step Length</td>
<td>50</td>
<td>315.1</td>
<td>252.9</td>
<td>207</td>
</tr>
<tr>
<td>Duration of turning around</td>
<td>55.4</td>
<td>89.6</td>
<td>90</td>
<td>76.3</td>
</tr>
</tbody>
</table>

Fig. 3: PA as treatment and outcome measure for Osteoporosis in the FP7 Project “The Osteoporotic Virtual Physiological Human (VPHOD)”, which aims to develop a modelling technology based on conventional diagnostic imaging methods, other clinical and lifestyle data and information that makes it possible to predict for each patient the strength of his/her bones.

Fig. 4: The actibelt® is a belt with a high-tech buckle carrying a 3D-acceleration sensor to continuously, unobtrusively monitor long-term physical activity in the course of daily life. [1]

Key questions

- How should PA be measured?
- What are the most relevant aspects of PA?
- Should other biosignals be coupled with PA?
- What are the roadblocks – technological, financial, psychological – preventing the increased adoption of PA as therapy and outcome for chronic disease?
- What are key projects?

Fig. 5: PA as treatment and outcome measure with Prostheses: New BCBS Policy effective May 15, 2007: Microprocessor-controlled Prosthetic Knees are medically necessary for qualified transfemoral amputees” [6].

Fig. 6: 3D acceleration data measured with the actibelt® and heart rate measured with a POLAR watch as preliminary work for the NETSIM FP7 Project which connects acceleration data and ECG.

Fig. 7: Comparison of sustained improvement and sustained progression of Multiple Sclerosis RR patients. In relapsing-remitting MS examination of widely used definitions of treatment failure demonstrated that disability progression was no more likely than similarly defined improvement. Clinical surrogates of unmitting disability used in trials of relapsing-remitting MS cannot be validated. [5]

The workshop was jointly organised by
- Sylvia Lawry Centre for Multiple Sclerosis Research e. V.*
- Trium Analysis Online GmbH
- Robert Bosch GmbH

The Sylvia Lawry Centre is supported by the Porticus foundation
* Members of the Physical Activity Expert Panel: see www.actibelt.com, van Aken WG (University of Twente NL), Benthem B (Technische Universität München (TUM) GERM), M Daumer USA, Ebers G (University of Oxford UK), Eiser B (Robert Bosch GmbH Ditzingen GERM), Pöldt M (Technische Universität München GERM), Genève (Sylvia Lawry Centre for Multiple Sclerosis Research e. V.)*, Scholz M (Trium Analysis Online GmbH Munich GERM), Zmysłowski C (TK Hamburg GERM), Taylor WR (Charité - Universitätsmedizin Berlin GERM), Thaler K (Sylvia Lawry Centre Munich GERM), Scholz M (Trium Analysis Online GmbH Munich GERM), Scholz M (Trium Analysis Online GmbH Munich GERM)

Fig. 8: Results/"sust. improvement/sust. progression/sust. improvement" for qualified transfemoral amputees" [6].

Fig. 9: Introducing Actimbelt® - an easy-to-use system like the actibelt®.